GENERATION OF HIGHER ELECTRON CYCLOTRON
FREQUENCY HARMONICS IN PLASMA WITH A BEAM

M. A, Livshits

We examine nonlinear excitation of the higher electron-cyclotron frequency harmonics for
waves propagating perpendicular to an external uniform magnetic field in a Maxwell plasma
for the case of low-density electron beam passage through the plasma. It is shown that the
nonlinear excitation mechanism leads to the possibility of generating cyclotron harmonics
for plasma parameters for which generation does not occur from the linear theory view-
point. The nonlinear cyclotron harmonic generation increments are calculated for non-
linear scattering by the beam and plasma electrons of the high frequency longitudinal waves
excited in the plasma by the beam.

Study of electron gyrofrequency harmonic propagation is of interest, first of all, for cyclotron heating
of plasma, the radiation of cyclotron harmonics by nonequilibrium plasma, and for their interaction with
other types of waves, Because of the absence of Landau damping for such waves when they propagate per-
pendicular to the external magnetic field, the energy contained in such waves may be very large, and all
possible nonlinear interactions with participation of these waves become quite important. Therefore, we
should examine the possibilities of both linear and nonlinear excitation of such waves. Nonlinear genera-
tion of electron cyclotron harmonics in a plasma with current was examined in [1]; also presented there
are references to experimental studies. On the other hand, generation of electron gyrofrequency harmonics
has been observed in a plasma when passing a low-density electron beam through it (for example, [2]). In
the present paper we examine a possible nonlinear mechanism for such generation, The linear mechanism
for excitation of such waves developed in several papers (for example, [3-5]) leads te limitations on the
beam and plasma parameters. The excitation of quasilongitudinal electronic cyclotron waves is examined
in [3, 4] under the assumption that the electron velocity distribution function has the form

n1
T =T 8L =218y —2)

and in [5], along with the distribution in the form of the delta function, there are background electrons with
Maxwellian distribution function,

Essential for the possibility of generation is that the transverse velocity distribution function be non-Max-
wellian; increase of the transvere velocity spread leads to stabilization {4]. Inall casesthereisalower genera-
tionthreshold wp /2 >1 (wy, = (47e?N/mg)/2is the electron Langmuir frequency, @ = | e |H/mgc is the electron
cyclotronfrequency), depending onthe cyclotron harmonic number, and also in the presence of Maxwellian elec-
trons (we shallterm them the plasma proper in contrast withthe beam with delta function distribution) on the ratio
of the densities and characteristic velocities of the beam and plasma [5]. For eachvalueof g =wL/S2 abovethe
thresholdthere are ranges of values of A =k;v,; /Q (wherek, is the wave number of the electron cyclotron wave) in
whichthereis nogeneration (specifically, in all cases there is no generation for A <1), The nonlinear excitation
mechanism examined below leads to the possibility of generation of both quasilongitudinal and ordinary and extra-
ordinary electron cyclotron waves during scattering by the plasma and beam electrons of the quasilongitudinal
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high-frequency waves excifed in the plasma in the magnetic field by the low-density electron beam n; << n,
(ny is the beam density, n, is the plasma density), whose velocity exceeds the phase velocity vy of these waves
[6, 7]. This generation occurs even for Maxwellian distribution of the transverse beam velocities in the
case of corresponding longitudinal beam velocities, Generation can occur in both dense ¢>> 1 and non-
dense q< 1 plasma. The ranges of values of the parameter u;=(kve/Q)? are determined by the closeness
of the generated frequency wy, to the harmonics of the electron gyrofrequency v, fl.

1. BASIC EQUATIONS

Let the plasma and beam electrons be characterized by Maxwellian distributions

2 v — )2
fﬂ( )_ (2 )1/2 p—‘z‘;% 3 701( ) (21’\5)3/211 exp (ZVL,EZ VO) (1.1)

Here ng, v, are the density and average thermal velocity of theplasma electrons, ny, ug are the same
quantities for the beam, v, is the average systematic velocity of the beam, and H, is the external constant
and uniform magnetic field, We shall consider that n; < ny, and v, || H,.

For sufficiently high beam velocity vy > v high frequency longitudinal oscillations are excited in the
plasma with the frequencies [6]

0.2 (8) =1y (012 -- Q) £ Y, V (0n + OO — Lor 20 cos? (1.2)

Here 6 is the angle between the wave vector k and the magnetic field Hy. In deriving (1.2) the plasma
was assumed cold, i.e., the conditions were satisfied

® — nQ

Br = l—kzl_ve>1 (1.3)

In the limiting cases of plasma of very high and very low density (> 1, q<1), we have from (1.2)
o, =~ o (1 +Y/29%sin®0), 0_~ Q5080 (¢ > 1) (1.4)
0, ~Q 1+ ¢/2sin?0), 0.~ opcos b (g 1) (1.5)

The formulas for w, are valid to within terms of order mé /mi for any angles 8; the formulas for w_
are valid provided

(127 — 0> (m, [ m,) (1.6)

Moreover, since w, or w_<Qas 60, the following condition must be satisfied:
kv, ¢ 2
'Ea“< 21— ¢%| 8

The nonlinear equation descrihing the process of induced scattering by the plasma and beam elec-
trons can be obtained from semiquantum balance arguments [8]

azvkl
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Here N, is the number of quanta of sort o, u5°* is the probability of scattering of the wave o with
momentum k by the particle o with momentum p, with transformation into the wave o' with momentum
k. Both the plasma electrons and the beam electrons contribute to the scattering probability, However,
the beam contribution is on the order of ny/ny <1 of the plasma electron contribution, and therefore we
shall neglect the beam contribution hereafter, However, f, is the overall distribution function of the beam
and plasma electrons. The expression for the scattering probability has the form

1,992 (p, k, ky) = 2 (2n)80,2 (k) O (05 — Ko, — V%)

- (1.8)
x| 0ot L o o 0% | L o () A (kB s (O) P
Wy = O — O, ke = k—ky, k= {k, »}
Ay () = Ay (b, B) + Ag® (6, )
a0 (k) = as (k) e () a3 (K) + (ka (K)) (ka* (k) (1.9)
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Ay (ky By) = [S”s (e, ky, 2) + Sysj (ks kyy EIEs (By) (1.10)
Es (k) = I (k)fz(z)

Here a (k) is the unit polarization vector of the wave?s, ey . and £y are the charge and cyclotron
frequency of the particle of sort o, the tensor Aj J( )(k ky) is connected with the particle vibrations in the
wave field (Compton scattering), and Ay ( )k, ky) is connected with the scattering of the incident wave by
the screening charge cloud (nonlinear scattermg proper). The components of the tensor S1 sk, ky, ko) are
found from the expressions for the nonlinear current in the plasma in a magnetic field [9], where the ion
contribution is on the order of mg /mj of the electron concentration and can be neglected, and Mgy (ky) is
the inverse Maxwellian operator for the k, wave. The current j(k,) is determined by the unperturbed mo-
tion of the scattering particle in the magnetic field

e\'l .
(k) = 3 b o ~ ko, — V@) exp (— ivg)T, (1.11)
v

4 LUJ_

Fx =5 [JVrl (kJ_r“) e -+ - (kl_rfx) ew] Fy - 2 [Jv—l (k,Lrac) el — ']'/11 (I‘:J_rﬁ) e_i:p]

U, =vJ,(k 1), re =0 | Qa, sing =ky/k

The expressions for Aij (1) are presented in [9],

In the problem in question some expressions can be simplified. First, the coefficients Sjjg in the
quadratic term of the expansion of the nonlinear current in the interacting wave amplitudes, through which
the scattering probability is expressed, can be expanded into a series in ¢ < 1land Bn_1 « 1, since it is
precisely in this approximation (cold plasma approximation) that Eqs. (1.2) for the high frequency longi-
tudinal oscillations in a magnetic field were obtained. This expansion into series in expressions for Sijg
corresponds to the expansion into a series in kv/w in the kinetic equation for the electron distribution func-
tion of the second approximation, from which the expressions for Sl]S were obtained. The approximate
expressions for the nonlinear currents have the form

@ () — ~
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jelo 8, (k) — 8

Sa® = — Gy = (0 3 5 8 ) [y 6 ) — o, (850 12 05,
Sy = — 12l %{kz Bjs o (ysbjs-t hrad ]3)} (1.12)

Second, we can simplify the expressions for the tensor £; (e) (ky), where ky= {kz, wz} is the virtual
wave, In fact, wy=w—wy, ky=k—K;(w, k are the frequency and wave vector of the high frequency longitudinal
wave, and wy, ky are the frequency and wave vector of the electron cyclotron wave w; = v€), Since the ab-
sence of absorption of the electron cyclotron waves by the thermal particles in the plasma is associated
with the perpendicularity of their propagation with respect to the direction of the external magnetic field
(which was taken along the z axis), for the virtual wave k,; =k,. Therefore, in the expressions for €43 (e) (k,)
we can make an expansion in the parameter

@z — n2 o — @3 —~ nQ ®—(n - v Q

T, = Thio = Thls, =1 (1.13)

by virtue of (1.3) (the presence of the small correction A = o; — v,Q, A< Q does not alter the essence
of the situation), In this approximation of the tensor aij(kz) (i, j=1, 2, 3) has the form

24, (1o , A 1.14)
811 = 1 — 2 Bn((ﬂz) ['Z_M(iz _— ZHZAn (P«z) Slnz(PJ (

n%Ay (s ,
o = 1= 3B (o) [ — 204" () cos']
B1a = Byy™ = ig = ) iB,, (w) An’ (W) (7 + 2ipty Sin @y cOS @)
By =1— 2 B, (w) Ay (1a), B13 = €31 == Eg3 == £33 = 0

,_ 44, kg %0, o
An (i) = oxp (—p) [n (W), An' = %, =", B =gy
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Here In(uy) is the modified Bessel function,

We note that expansion in the parameter u, is not always possible, since although u<1 for longi-
tudinal waves, in the general case u; <1, uy; >1 for electron cyclotron waves.

The expression for the inverse Maxwellian operator describing the virtual wave ky in the wy—nQ >
| Koy | ve approximation has the form
2z ! Ve

4i Ty .
;= — wf:‘ A Gi=1,23) (1.15)

D = Nyt [eg52® + (618 + &35 (1 — 1)1 — 23] — N2 {(1 — 2%) [e11825
—g? — eyy8a3 (1 — 18) — £508338%] - (1 + 220)€33) T+ (E11820 — £°)Ess

Ty =N (1 —a)f — Np? {egy (1 — 2% + 55 [4 — (1 — 22 (1 — )]} + e30853

T12 == T21* = N24 (1 —_ xz)t V].:Zé— N22 {833 (1 —_ .Zz)t Vl —f ig X (1 -—_ xz)} _— ig833
Tya=Tu*= N2z VI—2® N2t +ig V1= £ — eyl
Ty =N (1 — 2% (1 — £2) — N2 {en (1 —2¥) +egq1—(1 — 23]} +ey4853
Tog = Tag* = Ny z ]/1 — 22[N,? ]/1 — 2 — gy ]/1 — 2 — igt]

T33 == Nz4$2 — sz {811 + €9 — (1 — .732) [811 ('1 — tz) -+ 822t2]} + €11890— g” (1 16)

Here
emn == Bmn (k2)7 N22 = k2202 / (’3221 Z? == kZzzl kzz, £ = kﬂxE/ sz_z = cos? Py

We shall now examine excitation of ordinary and quasilongitudinal eyclotron waves in the case of
nonlinear scattering of the waves (1.4) (1.5) by the beam and plasma electrons,

2, EXCITATION OF ORDINARY ELECTRON CYCLOTRON WAVES

The dispersion equation for ordinary cyclotron waves has the form (the direction of the wave vector
k; is taken as the x axis)

o0
® k12c?
2 A (llu)ml—_lm; e uluz 2.1)

=0

2 mLmz
ny® = €33 (kl) =41 — —(JF
I

For the frequency wj close to v;, we have (ion motion may be neglected)

©1 — Vo ® 2t »
_}—V()_Qg—z_E—Ava(pl)a M:qz—c?—zpj (2.2)
where % is the ratio of the gaskinetic and magnetic pressures.
— 2
lwlml IQI> 7:; ({ is an integer.) o)

leads to the fact that propagation of ordinary cyclotron waves is possible only in a dense plasma g>1 (for
more detail on this see the dissertation of K. N. Stepanov, Khar'kov State University, 1965). We shall pre-
sent the results of calculations of the nonlinear excitation increments of these waves for scattering of high
frequency longitudinal waves with frequencies w=w, (1.4) by the plasma and beam electrons,

We shall examine two cases,

1. Long Waves, 1< 1, From (2.3) follows oy, >v§2. In this case u, < 1,since p <1, and the non~
zero components of the tensor ejj (e)(kz) have the form

o2 @2 ©,;2Q
L L L
€11 = €93 = 1 - o S33 = 1 51 8 = s oF (2.4)
3% — L W2 @9 (0% — Q%)

Evaluation of the inverse Maxwellian operator shows that in this case scattering takes place basically
through the virtual longitudinal wave. The condition for this will be the inequality N,?> N,,2, N,.2, where
N,42, N,_? are roots of the equation D=0. In the evaluation we used the conditions n?=(ke/) 2> 1 (condition
of quasilongitudinality of the k waves), and n?=(k,c/w;)? > 1 follows from (2.1). The inverse Maxwellian
operator takes the form
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2i'2j < (kg) = 21k27 &y (k2)> (2.5)

Mtk = = o, Tae )

For nonlinear scattering of the wave with frequency w=w, we find, using (1.10)-(1.12), (2.4), (2.5)
with account forwy, > v,
A® (k, k) = a* (k) Ay® (k, ky) a; (ky) (2.6)
ie?® ki \2 .
T2 (2n)3m;o?92 (k_:> €08 6%—1’ 8 (03 — Fig,v; — V) T, (a1 7) 0XP i¥ePy
Compton scattering is defined by the expression

AW (k, ky) = a5* (k) Ag® (k, ky) @ (ky) = ooy —o -2 (2.7)

(251)3 m, Mk o1

x 2 6(w2—kuvz+vsz>t—~"—"’)i~——/k + ik, QVQ)+ Ee s Jotear)

(® w1 — vQ

For

o2 Fq? kzzue?‘
(1)1-—-‘\7()Q>}k——k;ll2 ’ Vg2Q? >1‘

Compton scattering is dominant. The scattering probability has the form (the resonant term in A is re-
tained)

. s J2 (Rar) o . k
wooe — z—rri?ﬁmé(m—kzvz)ﬁfklzslnze <_k1_< q) (28)

The nonlinear excitation increment of the ordinary electron cyclotron waves is given by the formula

1 et 2 Wantg — Bo? 2.9
o = %1 Qz gdek T S0 {-gg— exp —— (2.9)
© — k,vg A, () — (© — k,v0)? , klu,
+ ueaz ny Av,, (B1) exp - 202Ut } (P‘l Qe )

The first term is associated with scattering by the plasma electrons; it is exponentially small. The
second term is associated with scattering by the beam electrons. The buildup condition will be the pres-
ence of longitudinal k waves with negative projection k;; otherwise, the beam introduces additional damping
{(prior to initiation of longitudinal waves buildup in the direction of smaller k), since

kavy > @y (2.10)

This follows from the condition kyv, >w [6] for excitation by the beam of quasilongitudinal vibrations,
However, buildup by waves with negative k, is exponentially small, since the beam systematic velocity
vy > ug (without account for increase of ug by quasilinear relaxation), Buildup cyclotron waves is also pos-
sible by longitudinal waves with kv, < w, after spectral buildup of the initially excited waves with kyv, >w
in the direction of smaller k. This occurs only for scattering with frequency reduction when w > ;. The
estimate of the maximal generation increment has the form

Vin W' m A, 00 (ke , of
Tkymax = -3 _—-noTe To A () " (Ul)- (T) q=- Vol
, - dk
(Te = mu?, W' = Sme _(Zn)3> (2.11)

for &%u,? > v2Q% o, — ko, =~ 0 — kw, = k,u,

Here Wl is theZtotal energy of the k waves. However, if for all the quasilongitudinal waves excited
by the beam (kzue/w1) « 1, the increment ‘T, with account for only the resonance term in (2.7) is ex-
ponentially small

exp =2 vk
p Zkz,,yleﬂ’ {max

With account for the remaining terms in (2.6), (2.7) Tk ~ (& — v%,@)2 07" v of (2.11).
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Now let us examine excitation of the ordinary cyclotron wave for scattering of a longitudinal wave
with frequency w=w_; A () is given by the expression

1 ek, k1?2 o2 FE102m, R ®
@~ I L ey
A B mgke { T o T e = (kx + iky 9)

X S8(0s — ka, — vQ)J, (ks 7) exDives) (2.12)

The Compton scattering is given by (2.7), where w=w_. In this case, since w<wjy buildup is possible
only in the presence of waves with negative k,. It is exponentially small by virtue of v, > ug (with account
for only the resonance term in (2.7)). The estimate of the maximal excitation increment of the ordinary
cyclotron wave for dominant Compton scattering by the beam electrons has the form [the largest term in
(2.7) satisfying the condition wy+kyvy+14Q =0 is retained]

(2.13)

™

VI kpo—wQ WA, W) 2y o? <_l£1_>2<
k

— m 5 \? (@1 — vo2)?
Temax = =7 % T0 T, 4, (p) m v

‘m, g
Here we assumed @ <k,vy<vk, tg 0.

This estimate was obtained at the limit of satisfaction of (1.6), i.e., for 8 ~8 a%; W! is the energy
of the k waves in a narrow range of angles around 6y, 5.

2. Short Waves, iy > 1, We shall use (1.3). Then for the wave with frequency w=w_ u<«<1, For the
wave with frequency w=w; we shall also assume this inequality is satisfied. In this case, in view of p;>1
we have k, >k, i.e., for the virtual wave k,~—k,, andin (1,14)-(1.16) we must set 0 ,=7/2, 9= . Using
(1.10)-(1.12), (1.14)-(1.16), we obtain

k, 0
A‘”(k k)= (e i 2) e ";’p 9 (k) — 1)
k
— 2 (6 (k) — )] B+ 2L 2 e ﬁ)(kz) - 1)Exk, + &89 (ko) Fo, | (2.14)
Bugy = — 20 L (N9 — ) (V3? — Nos®) o+ 18 (Vo = M) ]
By = — -4—“1 21— ig (Nt — N o, — 11 (V3 = Nau?) ] (2.15)
4mi 1 .
Eu, = '-g:—_l)" 11 (Vo — No2) fuy,

D =gy (Na® — Ny B)(No* — N3 %), Np® =gg3 No'= & — g ey
(2.16)
Comparison of (2.14) and (2.15), (2.16) makes it possible to conclude that the first term in (2.14) is
determined by scattering through the virtual ordinary wave (a denominator of the form N%—N§+ remains),
while the second term is determined by scattering through a combination of the virtual extraordinary wave
and the virtual longitudinal wave (if such can be identified).

In the general case, we retain from the entire sum the term which includes s§§) (k;)—1, since this
includes the term with the resonance denominator wy—v,2. Taking into account the dispersion equation for
the ordinary cyclotron wave, we can write

i k k
A® (k, k) = _-_“&M.’ﬁ_.______ % <_k°i + i_EU_ Tf_)zjv (ka1 7) & (03 — kigavr, + V) (2.17)

The Compton scattering is defined by (2.7).

Identifying in (2.17) the resonance term and comparing with (2,17), we conclude that the Compton
scattering mechanism is definitive provided -

— 2
m — v N2+

> <~z (2.18)

Since (wi—voﬂ)/ Q « 1 (satisfaction of this condition is what permits considering propagation of the
eyclotron harmonic) and the k, wave is virtual and not the actually propagating ordinary wave (only for
which is the condition N, = N,42 satisfied), then (2.18) can be considered met.
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In this case the estimates for the ordinary cyclotron wave generation increments coincide with the
estimates for u;<< 1 with satisfaction of the same buildup conditions (remarks concerning (2.10)) and are
given by (2.9), (2.11) for transformation of the quasilongitudinal wave with frequency w=w, and by (2.13)
for transformation of the wave with frequency w=w_ with account for the fact that

AV: (p‘ll) /AVa (P‘) = Ve / Ue for p’1> 11 p’l’ > 1

3. EXCITATION OF QUASILONGITUDINAL CYCLOTRON WAVES
From the equation for the extraordinary cyclotron wave
e (F)m?® — ey (by)egy (By) — £12® () = 0 (3.1)
for 142> £,4y(kq) + £ 152(k;) /€ 41 (k;) we can obtain the equation for the quasilongitudinal cyclotron wave

2 2 oA, (3.2)
811(]61):1————0)—1’2— 2 1 (¥ 1 0

o I=—cc Pia 0

For a frequency wy which is close to 42, neglecting ion motion, we have (the resonance term and
terms with I =+1 are retained)

W1 — V&2 — AvD (il}) Q2 2 Ay (P&) -t (3 °3)
vo T m 02 v—1 m

Following are the results of calculations of the nonlinear excitation increments of these waves for
dense and low-density plasmas,

1. Dense Plasma, q> 1, It follows from (3.3) that propagation of quasilongitudinal waves with fre-
quencies which are multiples of the electron cyclotron frequency is possible in a dense plasma only for
uy<<1 ffor py> 1 the wave frequencies are far from w2, which contradicts the assumption adopted in de-
riving (3.3)]. For uy<1, as in the case of the ordinary cyclotron wave, we can use (2.4), (2.5) and assume
that nonlinear scattering by the virtual longitudinal wave takes place.

It can be shown that in transformation of the wave with frequency w=w, into the quasilongitudinal
cyclotron wave Compton scattering is dominant and is defined by the expression

1 e ] Q

A(l) (k, kl) o W%—e Z d (g — feonU, -1 VQ) Jo {kar) m X (lﬂx +i mky) (3.4)

Retaining the resonance term in the sum (3.4), we write the expression for the nonlinear increment

- 1 et By : k_]_2 noe Bo?
T & e o gy ) Vel e o (— )

Bk | U of 2
e — kv, A-,o [(159) —(® — ky0)?
+ ; ue3z ) i Avo (ba) exp (;)kzgl‘ezvo } (3.5)
If buildup takes place (remark to (2.10), (2.11)), the maximal increment has the estimate
Von ng Wtoo2 A, () (3.6)

Temax = 77 7 Ty va@ M A, (@)
© — kv, = ke, kilug® S vy2Q2

Compton scattering also dominates in transformation of the wave with frequency w=c. into the quasi~
longitudinal cyclotron wave. The estimate for the maximal increment has the form at the limit of satis-
faction of (1.6)

. Viz ny W Q N\ (01 — Vo) kpp— v Ay, () <~nﬁ\2 (8.7
Ty max =~ N noly 1 'kvo> v P lu, A, (1) me)

(0 + ko9 +vQ = 0)

2. Nondense Plasma, g<<1, Propagation of quasilongitudinal waves with frequencies close to the
harmonics of the electron cyclotron frequency is possible for both u <« 1 and py>1,
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In the case py;«1 for €ij (kz) we can use Egs. (2.4) and assume that nonlinear scattering takes place
through the virtual longitudinal wave,

Nonlinear scatteriﬁg of the wave with frequency (1.5) w=w .. is defined by the quantity

ie? Bk EP—(h k) ks ,
ARk, ) = ok s~ TE—ET ZJ (o1 7) 8 (05 — Jiyvy - — V) 0xP v (3.8)

Here it is assumed that
mzsz_k_L >k (0 —QY, kP> kg (v, — 1)®

Expression (3.4), in which w =&, remains valid for Compton scattering.

For both this wave and the wave with frequency w=w_, by virtue of the inequality w<wy = yf! in the
case of their scattering with transformation into electron cyclotron waves, buildup of the latter is possible
only in the presence of waves with negative k,. Account for only the resonance term in (3.4) leads to an
exponentially small buildup increment, Therefore, we must evaluate the contribution of the remaining
terms in (3.4) and (3.8) to the nonlinear increment, The corresponding estimate shows that the main con-
tribution is made by the largest term in (3.8), satisfying the condition wy+k,vy—v; 2 =0 (for kyue/Q «1),
The expression for the nonlinear increment for scattering of longitudinal waves with w=w, has the form

1 4 — Q)2 Q
o = okt B

A, () — 4, (w')
{nz(;? Avu (ui) exp Z:; + ug 3 (m2 + k UO) A (lLl) } (3.9)

Hl’fl

We have assumed that

kfzk% (Fezv0)t
kot [ ‘lsm‘ie>!’l

For the estimate of the maximal increment we obtain

Vg ng WA, W) g (01— Vo)® kw0 — Vo
Temax = "7 ng nly A, G [K—K|° 231 o %, T (3.10)

For k,ug A2>1 several terms in (3.8) make the same contribution to 7,

Similarly, for scattering of the wave with frequency w= w-, retaining the largest term in A(z), we ob-
tain the estimate for the maximal increment (for k,? >k 1kyq)

Vin m W kR A, (1) (@1 —voeQ)® kv — Vol
Temax ™ "7 7, noTe [k—Ig [* H Ay, (wa) 9o {5z ue (3.11)

By analogy with Section 2.2, for uy> 1, k; >k, i.e., ky=—k;, for both the wave with frequency w=cw,
and the wave with frequency w=w-. In the general case the nonlinear scattering proper is defined by the

quantity k .
A@ (e, key) = (_73:_ +i-L __> Jﬂ%.z_ 4nm (e © (k) — 1)

E o
— (o () — 1) B+ (5 4 7 52 (0 (k) - 22 0¥ (1)

.Q k ky @ elo ] ke ek £{? (k1) — 1
+ (l —(D.—h'i - T) ( (l" ) - 1) — Q2 4.‘I'I',m Ellk: T [ 431:771«8 EZkI (3.12)

Here Egk, are given by (2.15), (2.16).

Expression (3.4) holds for Compton scattering. Buildup is possible only in the presence of waves
with negative k,, where account for the resonance term in (3.4) leads to an exponentially small increment.
The primary contribution will be made by the largest terms in (3.4) and (3.12), satisfying the condition

wy+kzvy+ 1R 0 for kyue A2 < 1,
If the virtual wave is longitudinal, i.e., N2> N,.2, N, then A has the form {neglecting zu(e) (ky)—1
by virtue of the resonance denominator in €41(€)(k;)— 1 and assuming £4(8) ) =0)
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Comparison of the largest terms in (3.4) and (3.13) leads to the conclusion that nonlinear scattering
dominates if

(0% — Q%eyy (k) < KPv? (hpy > Q)
The maximal increment estimate for scattering of waves with frequencies w=w;, w=w- is

— ¥ in e wt R (01 — v Q)? kzvp — Vol )
Tk.max ~ T4 ng ngTy ue |en (ko) |* 1 oy | ue (3'14

However, for a univariate distribution k = k,, for the wave with frequency w=w.- the scattering is com-
pletely defined by the last term in (3.12). For the wave with frequency w=cw, this angle span is excluded
from consideration, since wy— as §—~0.

For comparison, we write the condition for domination of nonlinear scattering if it takes place through
the virtual ordinary wave; A(Z) has the form

A%, By = — te kaft e D)8 (0a— v +39) T () (3.15)

20)¥km e No*

and nonlinear scattering proper dominates if

N2 oo FLag ke (ke >Q
sz__j\72+2>/(kzvo)3'fl—l ¢ ( 0> ) (3-16)

4., SOME ESTIMATES

Limiting ourselves to the calculations presented above for the nonlinear excitation increments of the
ordinary and quasilongitudinal cyclotron waves (the expressions for the extraordinary cyclotron waves are
not presented because of their complexity, particularly since for n<« 4 <1 the corresponding extraordin-
ary wave branch becomes plasma waves), we note the following characteristic features of the nonlinear
cyclotron wave generation mechanism.

Excitation of cyclotron waves is possible in both dense and nondense plasmas. In the dense plasma
generation can start either after several cycles of nonlinear transfer of the quasilongitudinal waves ex-
cited by the beam across the spectrum toward smaller k, when the condition w—wy—~kzvy >0 begins to be
satisfied, or after isotropization of the quasilongitudinal waves because of different nonlinear isotropiza~-
tion mechanisms. The ordinary waves are excited more intensely [compare (2.11) and (3.7) for u; < 1].
However, we note that the increments will be quite large only for scattering of waves with w=w, and satis-
faction of the conditions

01 <L ke < kpy << 0 — 0, 07 VR <K 0r, (4.1)

Thus, in the dense plasma the first harmonics of the electron gyrofrequency are excited most in-
tensely. The excitation increment of the higher harmonics (w;>>k,ug) is several orders smaller, and ex—~
citation of the frequencies vy >wy, is possible only in the presence of negative k, and is also several or-
ders smaller than (2.11). Similarly, excitation of the electron cyclotron harmonics for scattering of waves
with w=w_ is possible only in the presence of negative k; and in magnitude is several orders smaller than
(2.11).

In the nondense plasma only the quasilongitudinal cyclotron waves are excited. Their nonlinear ex-
citation is possible in the presence of negative ky. It follows from the estimates (3.10), (3.11)}, (3.14), that
this excitation is also several orders less intense than (2.11).

Let us estimate the characteristic generation time for ordinary cyclotron waves for uy > 1 on the
basis of (2.11). We set wy,~108, vg~10"2ug~1073v, W ~10"%nyTe, ny ~1073ny, kyve ~108, kvy~ wr,.

In this case Timax ~ 10~¢ o7, ~ 10-* sec™ for ny~10'2 cm™3,

However, we must recall that nonlinear generation can occur only after nonlinear transfer of the
longitudinal waves excited by the beam across the spectrum in the direction toward smaller k.

883



Let us evaluate the time for transfer from the values k,v,> wto the values k,v,Zw,, i.e., by w—w,=
w™vy {2, In the case of transfer with ion scattering the estimate of the maximal transfer increment has
the form

o~

r],k max ™

Y B3

L Ty Ty (4.2)

for transfer through Ao = | Ak} |v, = v;0L /v, (for 6 ~1, where 0 is the angle between k! and kli).
For W l~10"2n0Ti, Te~10Tj, vo~10%;j the time for transfer through w—cw,

8 nT; _1( AT
e o v
T Vin wh or {14 i) " wg

is of the same order as (2.11).
The other increments discussed above can be evaluated similarly.

Both ordinary and quasilongitudinal waves can be excited in the dense plasma for ;> 1. In the non-
dense plasma only the quasilongitudinal waves can be excited.

As indicated above, the linear generation mechanism does not operate if the beam electron distri-
bution function is Maxwellian; for transverse velocity, distribution in the form of the é-function excitation
of the cyclotron harmonics is missing for A <1 [3-5].

For comparison we write the expression for the nonlinear ordinary electron eyclotron wave genera-
tion increment for scattering of quasilongitudinal waves with

- @ g
© =~ Of, +——2(1)L sin

by beam electrons with the distribution function

— (v —2,)?

Fo () = ma (2 0 78 (0 — voy) exp =02

[assuming, as in obtaining (2.9}, that Compton scattering is dominant, and retaining the resonance term in
(2.7)]. In this case the plasma electron contribution to 7k, is exponentially small,

_Vixim 1 9P k2 (a ‘dk osin’f — (@ — ko)’
Tk, ~ —3 ﬁ 7T, 00 A, (M—l) ')Nk @aP 1 P exp T, 1,
X (20, () T () v 22e . ©—Fto 5 53 (4.3)
l Yor i,

Hence we see that 7., changes sign when the quantity A passes through the roots of the expression
in the braces, i.e., ranges of stability and instability arise, associated with the form of the transverse
velocity distribution function, as in linear theory.

The author wishes to thank V. N. Tsytovich for posing the problem and for many discussions of the
questions touched upon in the article,
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